
A parallel implementation of tensor multiplication

(CSE260 Project progress report)

Bryan Rasmussen ∗

14 November 2006

1 Overview and Simplifications

The project, as originally conceived, is to develop an efficient parallel code
for multiplying tensors up to rank 4. We make several simplifications that
tighten the requirements. These should help to make the problem more
tractable and will allow for a successful completion of the project within the
allotted time.

First, we concentrate exclusively on one type of tensor operation: the
product of two rank-4 tensors with two reductions, resulting in another rank-
4 tensor. In standard notation, assuming Einstein summation, we write this
as

rabij = vabef tefij. (1)

The motivating application in computational chemistry involves several
different types of products with two rank-4 tensors and two contractions,
for example,

rabij = vijef tabef and rabij = vafietbejf . (2)

We could still compute these using the template in Equation (1); we would
only have to re-arrange the tensors beforehand. This last point is made easier
by the fact that we do not distinguish between covariant and contravariant
indices.

The second simplification is that of a 4-index transformation. Every
rank-4 tensor will, by assumption, have a representation as an element-wise

∗Los Alamos National Lab; bryanras@lanl.gov

1



sum of products of elements of a matrix, zij . Specifically, we construct v as

vabcd =
∑

r,s,t,u

zarzbszctzdu. (3)

This representation can drastically reduce storage requirements at the cost
of having to compute individual elements on-the-fly, possibly repeatedly on
different processors. Note, too, that the 4-index representation enforces a
huge amount of symmetry in the tensor. In general, as long as a, b, c, and d
are within the limits on dimension, then vabcd = vcdba = vbdac, and in general
a specific value is invariant under any permutation of the indices.

2 Current progress

We implement a serial algorithm for tensor multiplication in three ways. The
first two examples are MATLAB functions, one explicit and one recursive. Both
of the functions—which are shown in Sections 6 and 7—are highly inefficient.
Their main purpose is illustrative and corrective. That is, they elucidate the
basic outline of two different possible algorithms for tensor operations, while
also giving a means to check the results of more sophisticated programs.

The explicit routine in Section 6 requires that the arguments be both be
rank-4 tensors and that they operate as in Equation (1). It comprises four
loops with an internal element-wise multiplication and summation.

The recursive routine in Section 7 is more flexible but even less efficient
than the first. The recursive nature of the code requires significantly more
dynamic memory allocation and overhead. We include it to demonstrate a
different approach to the operation.

A more efficient MATLAB routine would employ much more extensive vec-
torization. It would also be much more difficult to read. Therefore, since
the routines are supposed to be pedagogical, we do not seek efficiency here.

The third implementation of the serial algorithm is in C++. This is
what we will expand to create the parallel version. It defines a general
tensor class called bryTensor, which contains several functions, including a
multiplication operation with arbitrary reductions and a generalization of
the 4-index transformation.

The multiplication operation works with two tensors of arbitrary rank
with any number of reductions. The only restriction is that if p is the number
of reductions, then the contracted indices be the last p indices of the first
tensor and the first p indices of the second tensor. In other words, Equation

2



(1) is extended to

ra1a2...amb1b2...bn
= va1a2...amc1c2...cptc1c2...cpb1b2...bn

. (4)

We do not use recursive function calls, preferring instead to force a large
loop over all possible summations. This costs some additional modulo op-
erations to keep track of current indices, but it is worth it to save memory
overhead.

The index transformation code is also more generic than necessary. It
assumes that the rank of the tensor is k, with k > 2. It computes the tensor
from a characteristic matrix, zij , using the formula

vi1i2...ik =
∑

j1j2...jk

zi1j1zi2j2 · · · zikjk
. (5)

All operations under the bryTensor class have been checked against the
corresponding MATLAB code for some small, sample tensors and characteristic
matrices. The reader should examine the header file, bryTensor.h, and then
compile and run the test code, testen.C, for details.

3 Strategy

(For the rest of this section, we reference the symbols in Equation (1).)
At first glance, the parallelization of the serial algorithm seems trivial.

We know the dimensions of the resulting tensor, rabij , in Equation (1).
Moreover, the computation of each component is essentially separate from
the computation of the other components.

Assume for concreteness that the dimension of the first index, a, denoted
Na, is the largest dimension in the tensor. We split r into a set of Na rank-
4 tensors, each with dimension one in the first index. (Really, these are
rank-three tensors, but it does not cost any extra storage to treat them as
rank-4.) We then assign each processor the task of calculating one of these
smaller tensors. To do the calculation, a processor needs access to t and
1/Npth of v.

Each processor then returns its result to a root “bookkeeper” processor,
which probably stores the result on disk. The original processor picks up
another task from the root and gets back to work. This strategy assumes
that Na is at least as large as the number of processors - 1, but natural
extensions apply if this is not the case.

The difficulty is two-fold. First, it may be beyond the ability of any
given processor to store the tensor t, which will necessitate a delicate balance

3



between storage limitations and the additional computational cost of 4-index
transformations. (Alternatively, we may store large pieces collectively, but
communication overhead makes this unattractive.) Second, there will still
be significant communication complexity from having to collect results and
distribute pieces of tensors.

The current plan is to write the algorithm using “flat MPI”. A bet-
ter method, which we may explore in the future, is to use multi-scale
communication—for example MPI for large blocks, and then OpenMP threads
on each processor for sub-components. This architecture will become more
salient on machines with multi-core processors or multiple processors per
computational node.

One final option is to use a fully-parallel language such as UPC. Such
a program would of course not be object-oriented, but UPCs shared address
space model could potentially ease problems with storage and allow for faster
execution times. We do not consider this option because of time constraints.

4 Goals and schedule

Because only two weeks remain until the project deadline, it will be necessary
to focus efforts on specific cases and live without perfectly optimized code.
Three distinct accomplishments are necessary for a successful completion of
the project:

1. A working parallel code for the multiplication of two rank-4 tensors
with two reductions. Since the serial code already works on arbitrary-
rank tensors with an arbitrary number of reductions, it may be just
as much work to write general code. We will see.

2. Speedup calculations and scaling information.

3. An understanding of how to improve, expand, and generalize the code.

In addition, several secondary goals would be good to achieve, only after

finishing the first list. These are less well-defined.

• Take advantage of the gross symmetry from the 4-index transformation
to save memory overhead and computation time. This will probably
accelerate the code most in the short term.

• Generalize both the serial and parallel versions to handle different
types of operations.

4



• Introduce threads into the parallel version to take advantage of multi-
core processors (or just to speed up serial algorithms).

• Investigate the best balance between memory and computation time
in the 4-index transformation.

• Clean up the bryTensor class, and possibly separate it into multiple
classes with an inheritance structure in order to improve extensibility.

To repeat, these are all secondary goals. The bulk of the work will be in
obtaining and evaluating a functional and correct parallel code. Hopefully,
it will be available within one week (by November 21).

5



5 Appendix: File list

The following is a list of important files used in the preparation of this
report. All files are under in the same directory. The list does not include
auxiliary files such as makefiles, etc.

prod2.m Explicit MATLAB calculation code listed in Section 6.

prod2rec.m Recursive MATLAB calculation code listed in Section 7.

formTen.m MATLAB function for creating a tensor from a characteristic
matrix.

genTens.m MATLAB script for creating some sample tensors.

tensi-j-k-n.dat Text files containing sample tensors. The dimensions are,
as the reader probably guessed, i, j, k, and n. The ordering of points
in the file is outside-in (row-major for a two-tensor).

charmi-j.dat Text files containing i × j characteristic matrices.

matlabtens.mat Sample tensors stored in MATLAB form.

bryTensor.h Header file for the bryTensor class.

bryTensor.C Code for the bryTensor class.

testen.C Simple program for testing elements of the bryTensor class.

6



6 Appendix: MATLAB serial algorithm with explicit

loops

function xx = prod2(vv,ww)

%

% Usage: xx = prod2(vv,ww);

%

% Amazingly inefficient routine for multiplying two

% four-tensors vv and ww with two reductions.

% Assumption of layout is

%

% xx(ii,jj,kk,ll) = vv(ii,jj,mm,nn)ww(mm,nn,kk,ll);

%

% This routine does no error checking.

%

% Get the dimensions.

Ni = size(vv,1);

Nj = size(vv,2);

Nk = size(ww,3);

Nl = size(ww,4);

xx = zeros(Ni,Nj,Nk,Nl);

% Like I said, this is very inefficient.

for ii=1:Ni

for jj=1:Nj

for kk=1:Nk

for ll=1:Nl

% Summation.

temp = squeeze(vv(ii,jj,:,:)).*ww(:,:,kk,ll);

xx(ii,jj,kk,ll) = sum(temp(:));

end

end

end

end

7



7 Appendix: Recursive MATLAB serial algorithm

function xx = prod2rec(vv,ww)

%

% Usage: xx = prod2rec(vv,ww);

%

% Recursive routine for multiplying two tensors

% vv and ww with two reductions. vv and ww can be

% of any rank >= 2.

%

% Assumed format:

% xx(ii,..,kk,..) = vv(ii,..,mm,nn)ww(mm,nn,kk,..);

%

% If we are already down to the last level, return a scalar.

if (length(size(vv))==2)

xx = vv.*ww;

xx=sum(xx(:));

else

% Strip two dimensions off the tensor with a recursive call.

Ni = size(vv,1);

Nk = size(ww,3);

xdims = length(size(vv))-3;

% Use Matlab’s string evaluations to allow for different

% ranks in the function call.

xstring = repmat(’,:’,1,xdims);

xeq = [’xx(ii’,xstring,’,kk’,xstring,’)’];

veq = [’vv(ii’,xstring,’,:,:)’];

weq = [’ww(:,:,kk’,xstring,’)’];

totstring = ...

[xeq,’=prod2rec(squeeze(’,veq,’),squeeze(’,weq,’));’];

% Still very inefficient.

8



for ii=1:Ni

for kk=1:Nk

eval(totstring);

end

end

end

9


